View publication

Driven by steady progress in deep generative modeling, simulation-based inference (SBI) has emerged as the workhorse for inferring the parameters of stochastic simulators. However, recent work has demonstrated that model misspecification can compromise the reliability of SBI, preventing its adoption in important applications where only misspecified simulators are available. This work introduces robust posterior estimation~(RoPE), a framework that overcomes model misspecification with a small real-world calibration set of ground-truth parameter measurements. We formalize the misspecification gap as the solution of an optimal transport~(OT) problem between learned representations of real-world and simulated observations, allowing RoPE to learn a model of the misspecification without placing additional assumptions on its nature. RoPE demonstrates how OT and a calibration set provide a controllable balance between calibrated uncertainty and informative inference, even under severely misspecified simulators. Results on four synthetic tasks and two real-world problems with ground-truth labels demonstrate that RoPE outperforms baselines and consistently returns informative and calibrated credible intervals.

Related readings and updates.

Simulation-based inference (SBI) is a statistical inference approach for estimating latent parameters of a physical system when the likelihood is intractable but simulations are available. In practice, SBI is often hindered by model misspecification—the mismatch between simulated and real-world observations caused by inherent modeling simplifications. RoPE, a recent SBI approach, addresses this challenge through a two-stage domain transfer…

Read more

We study the fundamental question of how to define and measure the distance from calibration for probabilistic predictors. While the notion of perfect calibration is well-understood, there is no consensus on how to quantify the distance from perfect calibration. Numerous calibration measures have been proposed in the literature, but it is unclear how they compare to each other, and many popular measures such as Expected Calibration Error (ECE)…

Read more