View publication

This paper was accepted at the Machine Learning for Audio Workshop at NeurIPS 2023.

Over the past several years, the synchronization between audio and visual signals has been leveraged to learn richer audio-visual representations. Aided by the large availability of unlabeled videos, many unsupervised training frameworks have demonstrated impressive results in various downstream audio and video tasks. Recently, Masked Audio-Video Learners (MAViL) has emerged as a state-of-the-art audio-video pre-training framework. MAViL couples contrastive learning with masked autoencoding to jointly reconstruct audio spectrograms and video frames by fusing information from both modalities. In this paper, we study the potential synergy between diffusion models and MAViL, seeking to derive mutual benefits from these two frameworks. The incorporation of diffusion into MAViL, combined with various training efficiency methodologies that include the utilization of a masking ratio curriculum and adaptive batch sizing, results in a notable 32% reduction in pre-training Floating-Point Operations (FLOPS) and an 18% decrease in pre-training wall clock time. Crucially, this enhanced efficiency does not compromise the model's performance in downstream audio-classification tasks when compared to MAViL's performance.

Related readings and updates.

AV-CPL: Continuous Pseudo-Labeling for Audio-Visual Speech Recognition

Audio-visual speech contains synchronized audio and visual information that provides cross-modal supervision to learn representations for both automatic speech recognition (ASR) and visual speech recognition (VSR). We introduce continuous pseudo-labeling for audio-visual speech recognition (AV-CPL), a semi-supervised method to train an audio-visual speech recognition (AVSR) model on a combination of labeled and unlabeled videos with continuously…
See paper details

Rescribe: Authoring and Automatically Editing Audio Descriptions

Audio descriptions make videos accessible to those who cannot see them by describing visual content in audio. Producing audio descriptions is challenging due to the synchronous nature of the audio description that must fit into gaps of other video content. An experienced audio description author will produce content that fits narration necessary to understand, enjoy, or experience the video content into the time available. This can be especially…
See paper details