AdaBoN: Adaptive Best-of-N Alignment
AuthorsVinod Raman†, Hilal Asi, Satyen Kale
AdaBoN: Adaptive Best-of-N Alignment
AuthorsVinod Raman†, Hilal Asi, Satyen Kale
Recent advances in test-time alignment methods, such as Best-of-N sampling, offer a simple and effective way to steer language models (LMs) toward preferred behaviors using reward models (RM). However, these approaches can be computationally expensive, especially when applied uniformly across prompts without accounting for differences in alignment difficulty. In this work, we propose a prompt-adaptive strategy for Best-of-N alignment that allocates inference-time compute more efficiently. Motivated by latency concerns, we develop a two-stage algorithm: an initial exploratory phase estimates the reward distribution for each prompt using a small exploration budget, and a second stage adaptively allocates the remaining budget using these estimates. Our method is simple, practical, and compatible with any LM-RM combination. Empirical results on prompts from the AlpacaEval, HH-RLHF, and PKU-SafeRLHF datasets for 12 LM/RM pairs and 50 different batches of prompts show that our adaptive strategy outperforms the uniform allocation with the same inference budget. Moreover, we show that our adaptive strategy remains competitive against uniform allocations with 20 percent larger inference budgets and improves in performance as the batch size grows.
Aggregate-and-Adapt Natural Language Prompts for Downstream Generalization of CLIP
November 4, 2024research area Computer Vision, research area Methods and Algorithmsconference NeurIPS
Large pretrained vision-language models like CLIP have shown promising generalization capability, but may struggle in specialized domains (e.g., satellite imagery) or fine-grained classification (e.g., car models) where the visual concepts are unseen or under-represented during pretraining. Prompt learning offers a parameter-efficient finetuning framework that can adapt CLIP to downstream tasks even when limited annotation data are available. In…
Finding Local Destinations with Siri’s Regionally Specific Language Models for Speech Recognition
August 9, 2018research area Speech and Natural Language Processing
The accuracy of automatic speech recognition (ASR) systems has improved phenomenally over recent years, due to the widespread adoption of deep learning techniques. Performance improvements have, however, mainly been made in the recognition of general speech; whereas accurately recognizing named entities, like small local businesses, has remained a performance bottleneck. This article describes how we met that challenge, improving Siri’s ability to recognize names of local POIs by incorporating knowledge of the user’s location into our speech recognition system. Customized language models that take the user’s location into account are known as geolocation-based language models (Geo-LMs). These models enable Siri to better estimate the user’s intended sequence of words by using not only the information provided by the acoustic model and a general LM (like in standard ASR) but also information about the POIs in the user’s surroundings.