CAMPHOR: Collaborative Agents for Multi-Input Planning and High-Order Reasoning On Device
AuthorsYicheng Fu, Raviteja Anantha, Jianpeng Cheng
CAMPHOR: Collaborative Agents for Multi-Input Planning and High-Order Reasoning On Device
AuthorsYicheng Fu, Raviteja Anantha, Jianpeng Cheng
While server-side Large Language Models (LLMs) demonstrate proficiency in tool integration and complex reasoning, deploying Small Language Models (SLMs) directly on devices brings opportunities to improve latency and privacy but also introduces unique challenges for accuracy and memory. We introduce CAMPHOR, an innovative on-device SLM multi-agent framework designed to handle multiple user inputs and reason over personal context locally, ensuring privacy is maintained. CAMPHOR employs a hierarchical architecture where a high-order reasoning agent decomposes complex tasks and coordinates expert agents responsible for personal context retrieval, tool interaction, and dynamic plan generation. By implementing parameter sharing across agents and leveraging prompt compression, we significantly reduce model size, latency, and memory usage. To validate our approach, we present a novel dataset capturing multi-agent task trajectories centered on personalized mobile assistant use cases. Our experiments reveal that fine-tuned SLM agents not only surpass closed-source LLMs in task completion F1 by 35% but also eliminate the need for server device communication, all while enhancing privacy.
COMPASS: A Multi-Turn Benchmark for Tool-Mediated Planning & Preference Optimization
December 11, 2025research area Human-Computer Interaction, research area Speech and Natural Language Processing
Real-world large language model (LLM) agents must master strategic tool use and user preference optimization through multi-turn interactions to assist users with complex planning tasks. We introduce COMPASS (Constrained Optimization through Multi-turn Planning and Strategic Solutions), a benchmark that evaluates agents on realistic travel-planning scenarios. We cast travel planning as a constrained preference optimization problem, where agents…
Towards Learning Multi-Agent Negotiations via Self-Play
January 28, 2019research area Computer VisionWorkshop at ICCV
Making sophisticated, robust, and safe sequential decisions is at the heart of intelligent systems. This is especially critical for planning in complex multi-agent environments, where agents need to anticipate other agents’ intentions and possible future actions. Traditional methods formulate the problem as a Markov Decision Process, but the solutions often rely on various assumptions and become brittle when presented with corner cases. In…