View publication

Text-to-image generative models have become a prominent and powerful tool that excels at generating high-resolution realistic images. However, guiding the generative process of these models to consider detailed forms of conditioning reflecting style and/or structure information remains an open problem. In this paper, we present LoRAdapter, an approach that unifies both style and structure conditioning under the same formulation using a novel conditional LoRA block that enables zero-shot control. LoRAdapter is an efficient, powerful, and architecture- agnostic approach to condition text-to-image diffusion models, which enables fine-grained control conditioning during generation and outperforms recent state- of-the-art approaches.

Related readings and updates.

Controlling Language and Diffusion Models by Transporting Activations

The increasing capabilities of large generative models and their ever more widespread deployment have raised concerns about their reliability, safety, and potential misuse. To address these issues, recent works have proposed to control model generation by steering model activations in order to effectively induce or prevent the emergence of concepts or behaviours in the generated output. In this paper we introduce Activation Transport (AcT), a…
See paper details

Conditional Generation of Synthetic Geospatial Images from Pixel-Level and Feature-Level Inputs

Training robust supervised deep learning models for many geospatial applications of computer vision is difficult due to dearth of class-balanced and diverse training data. Conversely, obtaining enough training data for many applications is financially prohibitive or may be infeasible, especially when the application involves modeling rare or extreme events. Synthetically generating data (and labels) using a generative model that can sample from a…
See paper details