View publication

*=Equal Contributors

This paper was accepted at the workshop "Trustworthy Machine Learning for Healthcare Workshop" at the conference ICLR 2023.

When analyzing robustness of predictive models under distribution shift, many works focus on tackling generalization in the presence of spurious correlations. In this case, one typically makes use of covariates or environment indicators to enforce independencies in learned models to guarantee generalization under various distribution shifts. In this work, we analyze a class of distribution shifts, where such independencies are not desirable, as there is a causal association between covariates and outcomes of interest. This case is common in the health space where covariates can be causally, as opposed to spuriously, related to outcomes of interest. We formalize this setting and relate it to common distribution shift settings from the literature. We theoretically show why standard supervised learning and invariant learning will not yield robust predictors in this case, while including the causal covariates into the prediction model can recover robustness. We demonstrate our theoretical findings in experiments on both synthetic and real data.

Related readings and updates.

Interpreting CLIP: Insights on the Robustness to ImageNet Distribution Shifts

What distinguishes robust models from non-robust ones? While for ImageNet distribution shifts it has been shown that such differences in robustness can be traced back predominantly to differences in training data, so far it is not known what that translates to in terms of what the model has learned. In this work, we bridge this gap by probing the representation spaces of 16 robust zero-shot CLIP vision encoders with various backbones (ResNets and…
See paper details

Transformation-Invariant Learning and Theoretical Guarantees for OOD Generalization

Learning with identical train and test distributions has been extensively investigated both practically and theoretically. Much remains to be understood, however, in statistical learning under distribution shifts. This paper focuses on a distribution shift setting where train and test distributions can be related by classes of (data) transformation maps. We initiate a theoretical study for this framework, investigating learning scenarios where…
See paper details