View publication

Recent developments in neural networks have led to the advance in data-to-text generation. However, the lack of ability of neural models to control the structure of generated output can be limiting in certain real-world applications. In this study, we propose a novel Plan-then-Generate (PlanGen) framework to improve the controllability of neural data-to-text models. Extensive experiments and analyses are conducted on two benchmark datasets, ToTTo and WebNLG. The results show that our model is able to control both the intra-sentence and inter-sentence structure of the generated output. Furthermore, empirical comparisons against previous state-of-the-art methods show that our model improves the generation quality as well as the output diversity as judged by human and automatic evaluations.

Related readings and updates.

With Apple Intelligence, we're integrating powerful generative AI right into the apps and experiences people use every day, all while protecting their privacy. At the 2025 Worldwide Developers Conference we introduced a new generation of language foundation models specifically developed to enhance the Apple Intelligence features in our latest software releases. We also introduced the new Foundation Models framework, which gives app developers…
Read more

In the fast-evolving world of natural language processing (NLP), there is a strong demand for generating coherent and controlled text, as referenced in the work Toward Controlled Generation of Text. Traditional autoregressive models such as GPT, which have long been the industry standard, possess inherent limitations that sometimes manifest as repetitive and low-quality outputs, as seen in the work The Curious Case of Neural Text Degeneration. This is primarily due to a phenomenon known as "exposure bias," as seen in the work Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks. This imperfection arises due to a mismatch between how these models are trained and their actual use during inference, often leading to error accumulation during text generation.

Read more