Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided constraints and guidelines. However, LLMs often fail to follow even simple and clear instructions. To improve instruction-following behavior and prevent undesirable outputs, a deeper understanding of how LLMs’ internal states relate to these outcomes is required. In this work, we investigate whether LLMs encode information in their representations that correlates with instruction-following success—a property we term “knowing internally”. Our analysis identifies a direction in the input embedding space, termed the instruction-following dimension, that predicts whether a response will comply with a given instruction. We find that this dimension generalizes well across unseen tasks but not across unseen instruction types. We demonstrate that modifying representations along this dimension improves instruction-following success rates compared to random changes, without compromising response quality. Further investigation reveals that this dimension is more closely related to the phrasing of prompts rather than the inherent difficulty of the task or instructions. This work provides insight into the internal workings of LLMs’ instruction-following, paving the way for reliable LLM agents

Related readings and updates.

Do LLMs Estimate Uncertainty Well in Instruction-Following?

Large language models (LLMs) could be valuable personal AI agents across various domains, provided they can precisely follow user instructions. However, recent studies have shown significant limitations in LLMs’ instruction-following capabilities, raising concerns about their reliability in high-stakes applications. Accurately estimating LLMs’ uncertainty in adhering to instructions is critical to mitigating deployment risks. We present, to our…
See paper details

Do LLMs Internally "Know" When They Follow Instructions?

This paper was accepted at the Foundation Model Interventions (MINT) Workshop at NeurIPS 2024. Instruction-following is crucial for building AI agents with large language models (LLMs), as these models must adhere strictly to user-provided guidelines. However, LLMs often fail to follow even simple instructions. To improve instruction-following behavior and prevent undesirable outputs, we need a deeper understanding of how LLMs’ internal states…
See paper details