Generalizable Error Modeling for Human Data Annotation: Evidence from an Industry-Scale Search Data Annotation Program
AuthorsHeinrich Peters, Alireza Hashemi, James Rae
AuthorsHeinrich Peters, Alireza Hashemi, James Rae
Machine learning (ML) and artificial intelligence (AI) systems rely heavily on human-annotated data for training and evaluation. A major challenge in this context is the occurrence of annotation errors, as their effects can degrade model performance. This paper presents a predictive error model trained to detect potential errors in search relevance annotation tasks for three industry-scale ML applications (music streaming, video streaming, and mobile apps). Drawing on real-world data from an extensive search relevance annotation program, we demonstrate that errors can be predicted with moderate model performance (AUC=0.65-0.75) and that model performance generalizes well across applications (i.e., a global, task-agnostic model performs on par with task-specific models). In contrast to past research, which has often focused on predicting annotation labels from task-specific features, our model is trained to predict errors directly from a combination of task features and behavioral features derived from the annotation process, in order to achieve a high degree of generalizability. We demonstrate the usefulness of the model in the context of auditing, where prioritizing tasks with high predicted error probabilities considerably increases the amount of corrected annotation errors (e.g., 40% efficiency gains for the music streaming application). These results highlight that behavioral error detection models can yield considerable improvements in the efficiency and quality of data annotation processes. Our findings reveal critical insights into effective error management in the data annotation process, thereby contributing to the broader field of human-in-the-loop ML.
May 22, 2024research area Data Science and Annotationconference ACL
Annotated data is an essential ingredient to train, evaluate, compare and productionalize machine learning models. It is therefore imperative that annotations are of high quality. For their creation, good quality management and thereby reliable quality estimates are needed. Then, if quality is insufficient during the annotation process, rectifying measures can be taken to improve it. For instance, project managers can use quality estimates to...
November 30, 2021research area Data Science and Annotation, research area Methods and AlgorithmsWorkshop at NeurIPS
This paper was accepted at the Data-Centric AI Workshop at the NeurIPS 2021 conference.
As the adoption of deep learning techniques in industrial applications grows with increasing speed and scale, successful deployment of deep learning models often hinges on the availability, volume, and quality of annotated data. In this paper, we tackle the problems of efficient data labeling and annotation verification under the human-in-the-loop setting....