Flexible Language Modeling in Continuous Space with Transformer-based Autoregressive Flows
AuthorsRuixiang Zhang, Shuangfei Zhai, Jiatao Gu, Yizhe Zhang, Huangjie Zheng, Tianrong Chen, Miguel Angel Bautista, Josh Susskind, Navdeep Jaitly
Flexible Language Modeling in Continuous Space with Transformer-based Autoregressive Flows
AuthorsRuixiang Zhang, Shuangfei Zhai, Jiatao Gu, Yizhe Zhang, Huangjie Zheng, Tianrong Chen, Miguel Angel Bautista, Josh Susskind, Navdeep Jaitly
Autoregressive models have driven remarkable progress in language modeling. Their foundational reliance on discrete tokens, unidirectional context, and single-pass decoding, while central to their success, also inspires the exploration of a design space that could offer new axes of modeling flexibility. In this work, we explore an alternative paradigm, shifting language modeling from a discrete token space to a continuous latent space. We propose a novel framework TarFlowLM, that employs transformer-based autoregressive normalizing flows to model these continuous representations. This approach unlocks substantial flexibility, enabling the construction of models that can capture global bi-directional context through stacked, alternating-direction autoregressive transformations, support block-wise generation with flexible token patch sizes, and facilitate a hierarchical multi-pass generation process. We further propose new mixture-based coupling transformations designed to capture complex dependencies within the latent space shaped by discrete data, and demonstrate theoretical connections to conventional discrete autoregressive models. Extensive experiments on language modeling benchmarks demonstrate strong likelihood performance and highlight the flexible modeling capabilities inherent in our framework.
Adapting Self-Supervised Representations as a Latent Space for Efficient Generation
November 4, 2025research area Computer Vision, research area Methods and Algorithms
We introduce Representation Tokenizer (RepTok), a generative modeling framework that represents an image using a single continuous latent token obtained from self-supervised vision transformers. Building on a pre-trained SSL encoder, we fine-tune only the semantic token embedding and pair it with a generative decoder trained jointly using a standard flow matching objective. This adaptation enriches the token with low-level,…
PLANNER: Generating Diversified Paragraph via Latent Language Diffusion Model
November 14, 2023research area Speech and Natural Language Processingconference NeurIPS
Autoregressive models for text sometimes generate repetitive and low-quality output because errors accumulate during the steps of generation. This issue is often attributed to exposure bias - the difference between how a model is trained and how it is used during inference. Denoising diffusion models provide an alternative approach in which a model can revisit and revise its output. However, they can be computationally expensive, and prior…