View publication

Can Transformers predict new syllogisms by composing established ones? More generally, what type of targets can be learned by such models from scratch? Recent works show that Transformers can be Turing-complete in terms of expressivity, but this does not address the learnability objective. This paper puts forward the notion of globality degree to capture when weak learning is efficiently achievable by regular Transformers, where the globality measures the least number of tokens required in addition to the tokens histogram to correlate nontrivially with the target. As shown experimentally and theoretically under additional assumptions, distributions with high globality cannot be learned efficiently. In particular, syllogisms cannot be composed on long chains. Furthermore we show that (i) an agnostic scratchpad cannot help to break the globality barrier, (ii) an educated scratchpad can help if it breaks the globality barrier at each step, (iii) a notion of ‘inductive scratchpad’ can both break the globality barrier and improve the out-of-distribution generalization.

Related readings and updates.

Modern vision models have achieved remarkable success in benchmarks where local features provide critical information about the target. There is now a growing interest in tackling tasks requiring more global reasoning, where local features do not provide significant information. Minsky and Papert put forward such tasks in 1969 with their connectivity study, exposing the limitations of the perceptron model. In this paper, we introduce an expanded…

Read more

Multiaccuracy and multicalibration are multigroup fairness notions for prediction that have found numerous applications in learning and computational complexity. They can be achieved from a single learning primitive: weak agnostic learning. Here we investigate the power of multiaccuracy as a learning primitive, both with and without the additional assumption of calibration. We find that multiaccuracy in itself is rather weak, but that the…

Read more