View publication

In practice, training using federated learning can be orders of magnitude slower than standard centralized training. This severely limits the amount of experimentation and tuning that can be done, making it challenging to obtain good performance on a given task. Server-side proxy data can be used to run training simulations, for instance for hyperparameter tuning. This can greatly speed up the training pipeline by reducing the number of tuning runs to be performed overall on the true clients. However, it is challenging to ensure that these simulations accurately reflect the dynamics of the real federated training. In particular, the proxy data used for simulations often comes as a single centralized dataset without a partition into distinct clients, and partitioning this data in a naive way can lead to simulations that poorly reflect real federated training. In this paper we address the challenge of how to partition centralized data in a way that reflects the statistical heterogeneity of the true federated clients. We propose a fully federated, theoretically justified, algorithm that efficiently learns the distribution of the true clients and observe improved server-side simulations when using the inferred distribution to create simulated clients from the centralized data.

Related readings and updates.

Combining Machine Learning and Homomorphic Encryption in the Apple Ecosystem

At Apple, we believe privacy is a fundamental human right. Our work to protect user privacy is informed by a set of privacy principles, and one of those principles is to prioritize using on-device processing. By performing computations locally on a user’s device, we help minimize the amount of data that is shared with Apple or other entities. Of course, a user may request on-device experiences powered by machine learning (ML) that can be enriched…
See highlight details

Federated Learning for Speech Recognition: Revisiting Current Trends Towards Large-Scale ASR

This paper was accepted at the Federated Learning in the Age of Foundation Models workshop at NeurIPS 2023. While automatic speech recognition (ASR) has witnessed remarkable achievements in recent years, it has not garnered a widespread focus within the federated learning (FL) and differential privacy (DP) communities. Meanwhile, ASR is also a well suited benchmark for FL and DP as there is (i) a natural data split across users by using speaker…
See paper details