View publication

A capable, automatic Question Answering (QA) system can provide more complete and accurate answers using a comprehensive knowledge base (KB). One important approach to constructing a comprehensive knowledge base is to extract information from Wikipedia infobox tables to populate an existing KB. Despite previous successes in the Infobox Extraction (IBE) problem (e.g., DBpedia), three major challenges remain: 1) Deterministic extraction patterns used in DBpedia are vulnerable to template changes; 2) Over-trusting Wikipedia anchor links can lead to entity disambiguation errors; 3) Heuristic-based extraction of unlinkable entities yields low precision, hurting both accuracy and completeness of the final KB. This paper presents a robust approach that tackles all three challenges. We build probabilistic models to predict relations between entity mentions directly from the infobox tables in HTML. The entity mentions are linked to identifiers in an existing KB if possible. The unlinkable ones are also parsed and preserved in the final output. Training data for both the relation extraction and the entity linking models are automatically generated using distant supervision. We demonstrate the empirical effectiveness of the proposed method in both precision and recall compared to a strong IBE baseline, DBpedia, with an absolute improvement of 41.3% in average F1. We also show that our extraction makes the final KB significantly more complete, improving the completeness score of list-value relation types by 61.4%.

Related readings and updates.

Entity Disambiguation via Fusion Entity Decoding

Entity disambiguation (ED), which links the mentions of ambiguous entities to their referent entities in a knowledge base, serves as a core component in entity linking (EL). Existing generative approaches demonstrate improved accuracy compared to classification approaches under the standardized ZELDA benchmark. Nevertheless, generative approaches suffer from the need for large-scale pre-training and inefficient generation. Most importantly…
See paper details

Growing and Serving Large Open-domain Knowledge Graphs

*= Equal Contributors Applications of large open-domain knowledge graphs (KGs) to real-world problems pose many unique challenges. In this paper, we present extensions to Saga our platform for continuous construction and serving of knowledge at scale. In particular, we describe a pipeline for training knowledge graph embeddings that powers key capabilities such as fact ranking, fact verification, a related entities service, and support for entity…
See paper details