View publication

In the field of deep point cloud understanding, KPConv is a unique architecture that uses kernel points to locate convolutional weights in space, instead of relying on Multi-Layer Perceptron (MLP) encodings. While it initially achieved success, it has since been surpassed by recent MLP networks that employ updated designs and training strategies. Building upon the kernel point principle, we present two novel designs: KPConvD (depthwise KPConv), a lighter design that enables the use of deeper architectures, and KPConvX, an innovative design that scales the depthwise convolutional weights of KPConvD with kernel attention values. Using KPConvX with a modern architecture and training strategy, we are able to outperform current state-of-the-art approaches on the ScanObjectNN, Scannetv2, and S3DIS datasets. We validate our design choices through ablation studies and release our code and models.

Related readings and updates.

PointConvFormer: Revenge of the Point-based Convolution

We introduce PointConvFormer, a novel building block for point cloud based deep network architectures. Inspired by generalization theory, PointConvFormer combines ideas from point convolution, where filter weights are only based on relative position, and Transformers which utilize feature-based attention. In PointConvFormer, attention computed from feature difference between points in the neighborhood is used to modify the convolutional weights…
See paper details

DeepPRO: Deep Partial Point Cloud Registration of Objects

We consider the problem of online and real-time registration of partial point clouds obtained from an unseen real-world rigid object without knowing its 3D model. The point cloud is partial as it is obtained by a depth sensor capturing only the visible part of the object from a certain viewpoint. It introduces two main challenges: 1) two partial point clouds do not fully overlap and 2) keypoints tend to be less reliable when the visible part of…
See paper details