View publication

Multilingual Machine Translation promises to improve translation quality between non-English languages. This is advantageous for several reasons, namely lower latency (no need to translate twice), and reduced error cascades (e.g. , avoiding losing gender and formality information when translating through English). On the downside, adding more languages reduces model capacity per language, which is usually countered by increasing the overall model size, making training harder and inference slower. In this work, we introduce Language-Specific Transformer Layers (LSLs), which allow us to increase model capacity, while keeping the amount of computation and the number of parameters used in the forward pass constant. The key idea is to have some layers of the encoder be source or target language-specific, while keeping the remaining layers shared. We study the best way to place these layers using a neural architecture search inspired approach, and achieve an improvement of 1.31.3 chrFchrF (1.51.5 spBLEUspBLEU) points over not using LSLs on a separate decoder architecture, and 1.91.9 chrFchrF (2.22.2 spBLEUspBLEU) on a shared decoder one.

Related readings and updates.

Towards Cross-Cultural Machine Translation with Retrieval-Augmented Generation from Multilingual Knowledge Graphs

Translating text that contains entity names is a challenging task, as cultural-related references can vary significantly across languages. These variations may also be caused by transcreation, an adaptation process that entails more than transliteration and word-for-word translation. In this paper, we address the problem of cross-cultural translation on two fronts: (i) we introduce XC-Translate, the first large-scale, manually-created benchmark…
See paper details

Improving How Machine Translations Handle Grammatical Gender Ambiguity

Machine Translation (MT) enables people to connect with others and engage with content across language barriers. Grammatical gender presents a difficult challenge for these systems, as some languages require specificity for terms that can be ambiguous or neutral in other languages. For example, when translating the English word "nurse" into Spanish, one must decide whether the feminine "enfermera" or the masculine "enfermero" is appropriate…
See highlight details