View publication

Machine learning models are trained to minimize the mean loss for a single metric, and thus typically do not consider fairness and robustness. Neglecting such metrics in training can make these models prone to fairness violations when training data are imbalanced or test distributions differ. This work introduces Fairness Optimized Reweighting via Meta-Learning (FORML), a training algorithm that balances fairness and robustness with accuracy by jointly learning training sample weights and neural network parameters. The approach increases model fairness by learning to balance the contributions from both over- and under-represented sub-groups through dynamic reweighting of the data learned from a user-specified held-out set representative of the distribution under which fairness is desired. FORML improves equality of opportunity fairness criteria on image classification tasks, reduces bias of corrupted labels, and facilitates building more fair datasets via data condensation. These improvements are achieved without pre-processing data or post-processing model outputs, without learning an additional weighting function, without changing model architecture, and while maintaining accuracy on the original predictive metric.

*=Equal Contributors

Related readings and updates.

The recent rapid adoption of large language models (LLMs) highlights the critical need for benchmarking their fairness. Conventional fairness metrics, which focus on discrete accuracy-based evaluations (i.e., prediction correctness), fail to capture the implicit impact of model uncertainty (e.g., higher model confidence about one group over another despite similar accuracy). To address this limitation, we propose an uncertainty-aware fairness…
Read more
Federated learning is an increasingly popular paradigm that enables a large number of entities to collaboratively learn better models. In this work, we study minimax group fairness in federated learning scenarios where different participating entities may only have access to a subset of the population groups during the training phase. We formally analyze how our proposed group fairness objective differs from existing federated learning fairness…
Read more