View publication

Machine Translation (MT) is undergoing a paradigm shift, with systems based on fine-tuned large language models (LLM) becoming increasingly competitive with traditional encoder-decoder models trained specifically for translation tasks. However, LLM-based systems are at a higher risk of generating hallucinations, which can severely undermine user’s trust and safety. Most prior research on hallucination mitigation focuses on traditional MT models, with solutions that involve post-hoc mitigation - detecting hallucinated translations and re-translating them. While effective, this approach introduces additional complexity in deploying extra tools in production and also increases latency. To address these limitations, we propose a method that intrinsically learns to mitigate hallucinations during the model training phase. Specifically, we introduce a data creation framework to generate hallucination focused preference datasets. Fine-tuning LLMs on these preference datasets reduces the hallucination rate by an average of 96% across five language pairs, while preserving overall translation quality. In a zero-shot setting our approach reduces hallucinations by 89% on an average across three unseen target languages.

Related readings and updates.

Hallucinations pose a significant obstacle to the reliability and widespread adoption of language models, yet their accurate measurement remains a persistent challenge. While many task- and domain-specific metrics have been proposed to assess faithfulness and factuality concerns, the robustness and generalization of these metrics are still untested. In this paper, we conduct a large-scale empirical evaluation of 6 diverse sets of hallucination…

Read more

Machine Translation (MT) enables people to connect with others and engage with content across language barriers. Grammatical gender presents a difficult challenge for these systems, as some languages require specificity for terms that can be ambiguous or neutral in other languages. For example, when translating the English word “nurse” into Spanish, one must decide whether the feminine “enfermera” or the masculine “enfermero” is appropriate…

Read more