View publication

Knowledge Graphs represent real-world entities and the relationships between them. Multilingual Knowledge Graph Construction (mKGC) refers to the task of automatically constructing or predicting missing entities and links for knowledge graphs in a multilingual setting. In this work, we reformulate the mKGC task as a Question Answering (QA) task and introduce mRAKL: a Retrieval-Augmented Generation (RAG) based system to perform mKGC. We achieve this by using the head entity and linking relation in a question, and having our model predict the tail entity as an answer. Our experiments focus primarily on two low-resourced languages: Tigrinya and Amharic. We experiment with using higher-resourced languages Arabic and English for cross-lingual transfer. With a BM25 retriever, we find that the RAG-based approach improves performance over a no-context setting. Further, our ablation studies show that with an idealized retrieval system, mRAKL improves accuracy by 4.92 and 8.79 percentage points for Tigrinya and Amharic, respectively.

Related readings and updates.

Open-domain Knowledge Graph Completion (KGC) faces significant challenges in an ever-changing world, especially when considering the continual emergence of new entities in daily news. Existing approaches for KGC mainly rely on pretrained language models’ parametric knowledge, pre-constructed queries, or single-step retrieval, typically requiring substantial supervision and training data. Even so, they often fail to capture comprehensive and…

Read more

We introduce Saga, a next-generation knowledge construction and serving platform for powering knowledge-based applications at industrial scale. Saga follows a hybrid batch-incremental design to continuously integrate billions of facts about real-world entities and construct a central knowledge graph that supports multiple production use cases with diverse requirements around data freshness, accuracy, and availability. In this paper, we discuss…

Read more