A New Benchmark and Progress Toward Improved Weakly Supervised Learning
In collaboration with University of Applied Sciences, Western Switzerland, University of Geneva
AuthorsJason Ramapuram, Russ Webb
In collaboration with University of Applied Sciences, Western Switzerland, University of Geneva
AuthorsJason Ramapuram, Russ Webb
Knowledge Matters: Importance of Prior Information for Optimization [7], by Gulcehre et. al., sought to establish the limits of current black-box, deep learning techniques by posing problems which are difficult to learn without engineering knowledge into the model or training procedure. In our work, we completely solve the previous Knowledge Matters problem using a generic model, pose a more difficult and scalable problem, All-Pairs, and advance this new problem by introducing a new learned, spatially-varying histogram model called TypeNet which outperforms conventional models on the problem. We present results on All-Pairs where our model achieves 100% test accuracy while the best ResNet models achieve 79% accuracy. In addition, our model is more than an order of magnitude smaller than Resnet-34. The challenge of solving larger-scale All-Pairs problems with high accuracy is presented to the community for investigation.
At the 2024 Worldwide Developers Conference, we introduced Apple Intelligence, a personal intelligence system integrated deeply into iOS 18, iPadOS 18, and macOS Sequoia.
Apple Intelligence is comprised of multiple highly-capable generative models that are specialized for our users’ everyday tasks, and can adapt on the fly for their current activity. The foundation models built into Apple Intelligence have been fine-tuned for user experiences such as writing and refining text, prioritizing and summarizing notifications, creating playful images for conversations with family and friends, and taking in-app actions to simplify interactions across apps.