View publication

Optimization over the set of matrices X that satisfy X^TBX = Ip, referred to as the generalized Stiefel manifold, appears in many applications involving sampled covariance matrices such as the canonical correlation analysis (CCA), independent component analysis (ICA), and the generalized eigenvalue problem (GEVP). Solving these problems is typically done by iterative methods that require a fully formed B. We propose a cheap stochastic iterative method that solves the optimization problem while having access only to a random estimates of B. Our method does not enforce the constraint in every iteration; instead, it produces iterations that converge to critical points on the generalized Stiefel manifold defined in expectation. The method has lower per-iteration cost, requires only matrix multiplications, and has the same convergence rates as its Riemannian optimization counterparts that require the full matrix B. Experiments demonstrate its effectiveness in various machine learning applications involving generalized orthogonality constraints, including CCA, ICA, and the GEVP.

Related readings and updates.

Manifold Diffusion Fields

We present Manifold Diffusion Fields (MDF), an approach that unlocks learning of diffusion models of data in general non-euclidean geometries. Leveraging insights from spectral geometry analysis, we define an intrinsic coordinate system on the manifold via the eigen-functions of the Laplace-Beltrami Operator. MDF represents functions using an explicit parametrization formed by a set of multiple input-output pairs. Our approach allows to sample…
See paper details

Generating Molecular Conformers with Manifold Diffusion Fields

This paper was accepted at Generative AI and Biology workshop at NeurIPS 2023. In this paper we tackle the problem of generating a molecule conformation in 3D space given its 2D structure. We approach this problem through the lens of a diffusion model for functions in Riemannian Manifolds. Our approach is simple and scalable, and obtains results that are on par with state-of-the-art while making no assumptions about the explicit structure of…
See paper details