Existing vision-language models exhibit strong generalization on a variety of visual domains and tasks. However, such models mainly perform zero-shot recognition in a closed-set manner, and thus struggle to handle open-domain visual concepts by design. There are recent finetuning methods, such as prompt learning, that not only study the discrimination between in-distribution (ID) and out-of-distribution (OOD) samples, but also show some improvements in both ID and OOD accuracies. In this paper, we first demonstrate that vision-language models, after long enough finetuning but without proper regularization, tend to overfit the known classes in the given dataset, with degraded performance on unknown classes. Then we propose a novel approach OGEN to address this pitfall, with the main focus on improving the OOD GENeralization of finetuned models. Specifically, a class-conditional feature generator is introduced to synthesize OOD features using just the class name of any unknown class. Such synthesized features will provide useful knowledge about unknowns and help regularize the decision boundary between ID and OOD data when optimized jointly. Equally important is our adaptive self-distillation mechanism to regularize our feature generation model during joint optimization, i.e., adaptively transferring knowledge between model states to further prevent overfitting. Experiments validate that our method yields convincing gains in OOD generalization performance in different settings.

Related readings and updates.

Memory-Retaining Finetuning via Distillation

This paper was accepted at the Fine-Tuning in Modern Machine Learning: Principles and Scalability (FITML) Workshop at NeurIPS 2024. Large language models (LLMs) pretrained on large corpora of internet text possess much of the world's knowledge. Following pretraining, one often needs to conduct continued pretraining on certain capabilities, such as math and coding, or "posttraining" (a.k.a., alignment) techniques to make the models follow users'…
See paper details

Transformation-Invariant Learning and Theoretical Guarantees for OOD Generalization

Learning with identical train and test distributions has been extensively investigated both practically and theoretically. Much remains to be understood, however, in statistical learning under distribution shifts. This paper focuses on a distribution shift setting where train and test distributions can be related by classes of (data) transformation maps. We initiate a theoretical study for this framework, investigating learning scenarios where…
See paper details