View publication

Motivated by the problem of next word prediction on user devices we introduce and study the problem of personalized frequency histogram estimation in a federated setting. In this problem, over some domain, each user observes a number of samples from a distribution which is specific to that user. The goal is to compute for all users a personalized estimate of the user's distribution with error measured in KL divergence. We focus on addressing two central challenges: statistical heterogeneity and protection of user privacy. Our approach to the problem relies on discovering and exploiting similar subpopulations of users which are often present and latent in real-world data, while minimizing user privacy leakage at the same time. We first present a non-private clustering-based algorithm for the problem, and give a provably joint differentially private version of it with a private data-dependent initialization scheme. Next, we propose a simple data model which is based on a mixture of Dirichlet distributions, to formally motivate our non-private algorithm and demonstrate some properties of its components. Finally, we provide an extensive empirical evaluation of our private and non-private algorithms under varying levels of statistical and size heterogeneity on the Reddit, StackOverflow, and Amazon Reviews datasets. Our results demonstrate significant improvements over standard and clustering-based baselines, and in particular, they show that it is possible to improve over direct personalization of a single global model.

Related readings and updates.

*Equal Contributors This paper was accepted at the International Workshop on Federated Learning in the Age of Foundation Models (FL@FM) at NeurIPS 2023. Personalized federated learning (PFL) aims at learning personalized models for users in a federated setup. We focus on the problem of privately estimating histograms (in the KL metric) for each user in the network. Conventionally, for more general problems, learning a global model jointly via…
Read more

Earlier this year, Apple hosted the Privacy-Preserving Machine Learning (PPML) workshop. This virtual event brought Apple and members of the academic research communities together to discuss the state of the art in the field of privacy-preserving machine learning through a series of talks and discussions over two days.

Read more