View publication

Dialog modelling faces a difficult trade-off. Models are trained on a large amount of text, yet their responses need to be limited to a desired scope and style of a dialog agent. Because the datasets used to achieve the former contain language that is not compatible with the latter, pre-trained dialog models are fine-tuned on smaller curated datasets. However, the fine-tuning process robs them of the ability to produce diverse responses, eventually reducing them to dull conversation partners. In this paper we investigate if prompting can mitigate the above trade-off. Specifically, we experiment with conditioning the prompt on the query, rather than training a single prompt for all queries. By following the intuition that freezing the pre-trained language model will conserve its expressivity, we find that compared to fine-tuning, prompting can achieve a higher BLEU score and substantially improve the diversity and novelty of the responses.

Related readings and updates.

Evaluating Gender Bias Transfer between Pre-trained and Prompt-Adapted Language Models

*Equal Contributors Large language models (LLMs) are increasingly being adapted to achieve task-specificity for deployment in real-world decision systems. Several previous works have investigated the bias transfer hypothesis (BTH) by studying the effect of the fine-tuning adaptation strategy on model fairness to find that fairness in pre-trained masked language models have limited effect on the fairness of models when adapted using fine-tuning…
See paper details

Aggregate-and-Adapt Natural Language Prompts for Downstream Generalization of CLIP

Large pretrained vision-language models like CLIP have shown promising generalization capability, but may struggle in specialized domains (e.g., satellite imagery) or fine-grained classification (e.g., car models) where the visual concepts are unseen or under-represented during pretraining. Prompt learning offers a parameter-efficient finetuning framework that can adapt CLIP to downstream tasks even when limited annotation data are available. In…
See paper details