View publication

Traditional query auto-completion (QAC) relies heavily on search logs collected over many users. However, in on-device email search, the scarcity of logs and the governing privacy constraints make QAC a challenging task. In this work, we propose an on-device QAC method that runs directly on users’ devices, where users’ sensitive data and interaction logs are not collected, shared, or aggregated through web services. This method retrieves candidates from pseudo relevance feedback, and ranks them based on relevance signals that explore the textual and structural information from users’ emails. We also propose a private corpora based evaluation method, and empirically demonstrate the effectiveness of our proposed method.

Related readings and updates.

Fingerprinting Codes Meet Geometry: Improved Lower Bounds for Private Query Release and Adaptive Data Analysis

Fingerprinting codes are a crucial tool for proving lower bounds in differential privacy. They have been used to prove tight lower bounds for several fundamental questions, especially in the "low accuracy" regime. Unlike reconstruction/discrepancy approaches however, they are more suited for proving worst-case lower bounds, for query sets that arise naturally from the fingerprinting codes construction. In this work, we propose a general framework…
See paper details

Combining Machine Learning and Homomorphic Encryption in the Apple Ecosystem

At Apple, we believe privacy is a fundamental human right. Our work to protect user privacy is informed by a set of privacy principles, and one of those principles is to prioritize using on-device processing. By performing computations locally on a user’s device, we help minimize the amount of data that is shared with Apple or other entities. Of course, a user may request on-device experiences powered by machine learning (ML) that can be enriched…
See highlight details