View publication

We revisit the problem of designing scalable protocols for private statistics and private federated learning when each device holds its private data. Locally differentially private algorithms require little trust but are (provably) limited in their utility. Centrally differentially private algorithms can allow significantly better utility but require a trusted curator. This gap has led to significant interest in the design and implementation of simple cryptographic primitives, that can allow central-like utility guarantees without having to trust a central server.

Our first contribution is to propose a new primitive that allows for efficient implementation of several commonly used algorithms, and allows for privacy accounting that is close to that in the central setting without requiring the strong trust assumptions it entails. {\em Shuffling} and {\em aggregation} primitives that have been proposed in earlier works enable this for some algorithms, but have significant limitations as primitives. We propose a {\em Samplable Anonymous Aggregation} primitive, which computes an aggregate over a random subset of the inputs and show that it leads to better privacy-utility trade-offs for various fundamental tasks. Secondly, we propose a system architecture that implements this primitive and perform a security analysis of the proposed system. Our design combines additive secret-sharing with anonymization and authentication infrastructures.

Related readings and updates.

Privacy-Computation Trade-offs in Private Repetition and Metaselection

A Private Repetition algorithm takes as input a differentially private algorithm with constant success probability and boosts it to one that succeeds with high probability. These algorithms are closely related to private metaselection algorithms that compete with the best of many private algorithms, and private hyperparameter tuning algorithms that compete with the best hyperparameter settings for a private learning algorithm. Existing algorithms…
See paper details

Apple Privacy-Preserving Machine Learning Workshop 2022

Earlier this year, Apple hosted the Privacy-Preserving Machine Learning (PPML) workshop. This virtual event brought Apple and members of the academic research communities together to discuss the state of the art in the field of privacy-preserving machine learning through a series of talks and discussions over two days.

See event details