SlowFast-LLaVA-1.5: A Family of Token-Efficient Video Large Language Models for Long-Form Video Understanding
AuthorsMingze Xu, Mingfei Gao, Shiyu Li, Jiasen Lu, Zhe Gan, Zhengfeng Lai, Meng Cao, Kai Kang, Yinfei Yang, Afshin Dehghan
SlowFast-LLaVA-1.5: A Family of Token-Efficient Video Large Language Models for Long-Form Video Understanding
AuthorsMingze Xu, Mingfei Gao, Shiyu Li, Jiasen Lu, Zhe Gan, Zhengfeng Lai, Meng Cao, Kai Kang, Yinfei Yang, Afshin Dehghan
We introduce SlowFast-LLaVA-1.5 (abbreviated as SF-LLaVA-1.5), a family of video large language models (LLMs) offering a token-efficient solution for long-form video understanding. We incorporate the two-stream SlowFast mechanism into a streamlined training pipeline, and perform joint video-image training on a carefully curated data mixture of only publicly available datasets. Our primary focus is on highly efficient model scales (1B and 3B), demonstrating that even relatively small Video LLMs can achieve state-of-the-art performance on video understanding, meeting the demand for mobile-friendly models. Experimental results demonstrate that SF-LLaVA-1.5 achieves superior performance on a wide range of video and image tasks, with robust results at all model sizes (ranging from 1B to 7B). Notably, SF-LLaVA-1.5 achieves state-of-the-art results in long-form video understanding (e.g., LongVideoBench and MLVU) and excels at small scales across various video benchmarks.
Breaking Down Video LLM Benchmarks: Knowledge, Spatial Perception, or True Temporal Understanding?
October 27, 2025research area Computer Vision, research area Methods and AlgorithmsWorkshop at NeurIPS
This paper was accepted at the Evaluating the Evolving LLM Lifecycle Workshop at NeurIPS 2025.
Existing video understanding benchmarks often conflate knowledge-based and purely image-based questions, rather than clearly isolating a model’s temporal reasoning ability, which is the key aspect that distinguishes video understanding from other modalities. We identify two major limitations that obscure whether higher scores truly indicate stronger…
MM-Ego: Towards Building Egocentric Multimodal LLMs
April 11, 2025research area Computer Vision, research area Speech and Natural Language Processingconference ICLR
This research aims to comprehensively explore building a multimodal foundation model for egocentric video understanding. To achieve this goal, we work on three fronts. First, as there is a lack of QA data for egocentric video understanding, we automatically generate 7M high-quality QA samples for egocentric videos ranging from 30 seconds to one hour long in Ego4D based on human-annotated data. This is one of the largest egocentric QA datasets…