View publication

Most bandit algorithms assume that the reward variances or their upper bounds are known, and that they are the same for all arms. This naturally leads to suboptimal performance and higher regret due to variance overestimation. On the other hand, underestimated reward variances may lead to linear regret due to committing early to a suboptimal arm. This motivated prior works on variance-adaptive frequentist algorithms, which have strong instance-dependent regret bounds but cannot incorporate prior knowledge on reward variances. We lay foundations for the Bayesian setting, which incorporates prior knowledge. This results in lower regret in practice, since the prior is used in the algorithm design, and also improved regret guarantees. Specifically, we study Gaussian bandits with \emph{unknown heterogeneous reward variances} and develop a Thompson sampling algorithm with prior-dependent Bayes regret bounds. We achieve lower regret with lower reward variances and more informative priors on them, which is precisely why we pay only for what is uncertain. This is the first such result in the bandit literature. Finally, we corroborate our theory with experiments, which demonstrate the benefit of our variance-adaptive Bayesian algorithm over prior frequentist works. We also show that our approach is robust to model misspecification and can be applied with estimated priors.

Related readings and updates.

Private Online Prediction from Experts: Separations and Faster Rates

*= Equal Contributors Online prediction from experts is a fundamental problem in machine learning and several works have studied this problem under privacy constraints. We propose and analyze new algorithms for this problem that improve over the regret bounds of the best existing algorithms for non-adaptive adversaries. For approximate differential privacy, our algorithms achieve regret bounds of O(Tlog⁡d+log⁡d/ε)O(\sqrt{T \log d} + \log…
See paper details

Dynamic Memory for Interpretable Sequential Optimization

Real-world applications of reinforcement learning for recommendation and experimentation faces a practical challenge: the relative reward of different bandit arms can evolve over the lifetime of the learning agent. To deal with these non-stationary cases, the agent must forget some historical knowledge, as it may no longer be relevant to minimise regret. We present a solution to handling non-stationarity that is suitable for deployment at scale…
See paper details