Advancing Egocentric Video Question Answering with Multimodal Large Language Models
AuthorsAlkesh Patel*, Vibhav Chitalia*, Yinfei Yang
AuthorsAlkesh Patel*, Vibhav Chitalia*, Yinfei Yang
Egocentric Video Question Answering (QA) requires models to handle long-horizon temporal reasoning, first-person perspectives, and specialized challenges like frequent camera movement. This paper systematically evaluates both proprietary and open-source Multimodal Large Language Models (MLLMs) on QaEgo4Dv2—a refined dataset of egocentric videos derived from QaEgo4D. Four popular MLLMs (GPT-4o, Gemini-1.5-Pro, Video-LLaVa-7B and Qwen2-VL-7B-Instruct) are assessed using zero-shot and fine-tuned approaches for both OpenQA and CloseQA settings. We introduce QaEgo4Dv2 to mitigate annotation noise in QaEgo4D, enabling more reliable comparison. Our results show that fine-tuned Video-LLaVa-7B and Qwen2-VL-7B-Instruct achieve new state-of-the-art performance, surpassing previous benchmarks by up to +2.6% ROUGE/METEOR (for OpenQA) and +13% accuracy (for CloseQA). We also present a thorough error analysis, indicating the model’s difficulty in spatial reasoning and fine-grained object recognition—key areas for future improvement.
July 1, 2025research area Computer Vision, research area Data Science and Annotation
April 11, 2025research area Computer Vision, research area Speech and Natural Language Processingconference ICLR