View publication

Applications such as autonomous navigation [1], human-robot interaction [2], game-playing robots [8], etc., use simulation to minimize the cost of testing in real world. Furthermore, some machine learning algorithms, like reinforcement learning, use simulation for training a model. To test reliably in simulation or deploy a model in the real world that is trained with simulated data, the simulator should be representative of the real environment. Usually, the simulator is based on manually designed rules and ignores the stochastic behavior of measurements. In particular, we would like to learn a model that captures uncertainties of the sensing algorithms (e.g. neural networks used to detect objects) in real world and add them in simulation. We model the distribution of residuals between the ground truth states of the objects and their perceived states by the sensing algorithm. This error distribution depends both on the current state of the object (e.g. distance from the sensor) and its past residuals. We assume the error distribution is conditionally Gaussian, and we use a deep neural neural network (DNN) to map the object states and past residuals to the distribution parameters (mean and variance). Our conditional model perturbs the dynamic objects’ states (position, velocities, orientations, and shape) and produces smoother trajectories which look similar to the real data.

Related readings and updates.

Driven by steady progress in deep generative modeling, simulation-based inference (SBI) has emerged as the workhorse for inferring the parameters of stochastic simulators. However, recent work has demonstrated that model misspecification can compromise the reliability of SBI, preventing its adoption in important applications where only misspecified simulators are available. This work introduces robust posterior estimation~(RoPE), a framework that…
Read more
In recent years, graph neural network (GNN) based models showed promising results in simulating complex physical systems. However, training dedicated graph network simulator can be costly, as most models are confined to fully supervised training. Extensive data generated from traditional simulators is required to train the model. It remained unexplored how transfer learning could be applied to improve the model performance and training…
Read more