View publication

Applications such as autonomous navigation [1], human-robot interaction [2], game-playing robots [8], etc., use simulation to minimize the cost of testing in real world. Furthermore, some machine learning algorithms, like reinforcement learning, use simulation for training a model. To test reliably in simulation or deploy a model in the real world that is trained with simulated data, the simulator should be representative of the real environment. Usually, the simulator is based on manually designed rules and ignores the stochastic behavior of measurements. In particular, we would like to learn a model that captures uncertainties of the sensing algorithms (e.g. neural networks used to detect objects) in real world and add them in simulation. We model the distribution of residuals between the ground truth states of the objects and their perceived states by the sensing algorithm. This error distribution depends both on the current state of the object (e.g. distance from the sensor) and its past residuals. We assume the error distribution is conditionally Gaussian, and we use a deep neural neural network (DNN) to map the object states and past residuals to the distribution parameters (mean and variance). Our conditional model perturbs the dynamic objects’ states (position, velocities, orientations, and shape) and produces smoother trajectories which look similar to the real data.

Related readings and updates.

DR-MPC: Deep Residual Model Predictive Control for Real-World Social Navigation

How can a robot safely navigate around people with complex motion patterns? Deep Reinforcement Learning (DRL) in simulation holds some promise, but much prior work relies on simulators that fail to capture the nuances of real human motion. Thus, we propose Deep Residual Model Predictive Control (DR-MPC) to enable robots to quickly and safely perform DRL from real-world crowd navigation data. By blending MPC with model-free DRL, DR-MPC overcomes…
See paper details

Transfer Learning in Scalable Graph Neural Network for Improved Physical Simulation

In recent years, graph neural network (GNN) based models showed promising results in simulating complex physical systems. However, training dedicated graph network simulator can be costly, as most models are confined to fully supervised training. Extensive data generated from traditional simulators is required to train the model. It remained unexplored how transfer learning could be applied to improve the model performance and training…
See paper details